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Introduction

Computation of optical and electronic properties
of materials

Photo-luminescence

Two types of physical systems

Crystals (bulk )

Nanostructures, e.g. quantum dots
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Infinite crystal: energy gap
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Quantum dots
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Quantum confinement effect
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Approach

Observation: qualitative relationship between
crystal and quantum dot states

Goal: quantify observation and use relationship
for computations
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Outline

Schrödinger equation

Subspace angles

Preconditioned Conjugate Gradient

Scalability issues

Performance evaluation

Summary
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Schrödinger equation
Interior eigenvalue problem

HΨi ≡

[

−
1

2
∇2 + V

]

Ψi = εiΨi,

Mathematical properties of Hamiltonian H

Complex Hermitian indefinite

Implicitly defined by MV product (uses FFT)

Eigenvalues with higher multiplicities
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Physical interpretation
Complex matrix H =

[

−1

2
∇2 + V

]

Laplacian ∇2 corresponds to kinetic energy of
electrons

Potential V precomputed or from experiment

Real eigenvalue εi

discrete energy level of electron

can be occupied or unoccupied

Complex eigenvector Ψi

probability distribution for spatial location
(state) of electron
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Subspace angles

Introduce SBB (bulk band space)

subset of eigenstates of crystal Hamiltonian

subspace of ‘quantum dot space’

of relatively small dimension

thus cheaply computable

sparse in plane wave basis

not eigenstates of quantum dot
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Projections
Orthogonal decomposition of quantum dot
states:

ΨQD = ΨBB + ΨBB⊥

Angle ∠(ΨQD,ΨBB) between state and its
projection: ≈ 2◦ − 3◦ for examples shown later.

⇒ small, but not small enough.
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Preconditioned Conjugate Gradient
For A ≡ (H − ErefI)2 find

λ = arg min
x6=0

ρ(x) ≡ ρ(x) = (xH Ax)/(xHx).

Residual rj ≡ Axj − ρ(xj)xj ‖ ∇ρ(xj)

Given xj, descent direction dj = −rj +βjdj−1, find

θj+1 = arg min
θ

ρ(xj cos θ + dj sin θ).

⇒ xj+1 minimizes ρ in 2D subspace span {xj, dj}.
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How to improve convergence of PCG
Starting vector: Find cheap x0 such that ρ(x0) is
as small as possible
⇒ use states from bulk as good approximations.

Preconditioner: Find cheap preconditioner P
such that modified descent direction

dj = −Prj + βjdj−1,

reduces ρ(x0) as much as possible.
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Details on preconditioner
Orthogonal decomposition of residual

rQD = rBB + rBB⊥

Additive preconditioner

PrQD = PBB rBB + PBB⊥ rBB⊥

PBB from low-rank spectral approximation

(HBB − ErefI)−2 ≈
∑

n,k

Ψnk(Enk − Eref)
−2 ΨH

nk

⇒ precondition projection of rQD on SBB.
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Scalability issues

Efficient preconditioner implementation:

Projection based on dot products of
distributed vectors

Latency -dominated runtime

Solution: block communication to single
blocked ALL_REDUCE

⇒ Cost increase per PCG iteration less than 5%.
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Performance evaluation

Quantum dot system size BB states
size (atoms) (plane wave) (n,k)
784 Cd, 739 Se 145K (5,949)
1568 Cd, 1601 Se 282K (5,949)

Table 1: Test quantum dots. 16 processors, IBM

SP.
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QD1 (n=145K)

 3.72529e-09

 1.49012e-08

 5.96046e-08

 2.38419e-07

 9.53674e-07

 3.8147e-06

 1.52588e-05

 6.10352e-05

 0.000244141

 0.000976562

 0.00390625

 0.015625

 2  4  6  8  10  12  14  16  18  20

R
es

id
ua

l N
or

m
s

Number of Outer Iterations, 200 inner

PCG Convergence History for the Valence Band (144,493 dofs; diagonal vs BB prec.)

diagonal old
diagonal new

BB preconditioner
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QD2 (n=282K)

 9.53674e-07

 3.8147e-06

 1.52588e-05

 6.10352e-05

 0.000244141

 0.000976562

 0.00390625

 0.015625

 5  10  15  20  25  30  35

R
es

id
ua

l N
or

m
s

Number of Outer Iterations, 200 inner

PCG Convergence History for the Valence Band (282,000 dofs; diagonal vs BB prec.)

diagonal old
diagonal new

BB preconditioner
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Summary

Crystal and quantum dot properties related:
small angle between QD states and bulk
subspace

Accelerate convergence of PCG through
improved initial vector and preconditioner,
iterations decrease by at least factor of 3

Reference: The use of bulk states to accelerate
the band edge state calculation of a
semiconductor quantum dot. TR LBNL-60147,
LBNL.
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